Tuesday, January 3, 2017

COMPUTER SIMULATION

COMPUTER SIMULATION
A computer simulation or a computer model is a computer program that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modelling of many natural systems in physics, chemistry and biology, human systems in economics, psychology, and social science and in the process of engineering new technology, to gain insight into the operation of those systems. Traditionally, the formal modeling of systems has been via a mathematical model, which attempts to find analytical solutions to problems which enables the prediction of the behaviour of the system from a set of parameters and initial conditions. Computer simulations build on, and are a useful adjunct to purely mathematical models in science, technology and entertainment. The reliability and the trust people put in computer simulations depends on the validity of the simulation model.
Computer simulation was pioneered as a scientific tool in meteorology and nuclear physics in the period directly following World War II, and since then has become indispensable in a growing number of disciplines. The list of sciences that make extensive use of computer simulation has grown to include astrophysics, particle physics, materials science, engineering, fluid mechanics, climate science, evolutionary biology, ecology, economics, decision theory, medicine, sociology, epidemiology, and many others. There are even a few disciplines, such as chaos theory and complexity theory, whose very existence has emerged alongside the development of the computational models they study.

Under the category of heuristic models, simulations can be further subdivided into those used to communicate knowledge to others, and those used to represent information to ourselves. Another broad class of purposes to which computer simulations can be put is in telling us about how we should expect some system in the real world to behave under a particular set of circumstances. Loosely speaking: computer simulation can be used for prediction. We can use models to predict the future, or to retrodict the past; we can use them to make precise predictions or loose and general ones. Finally, simulations can be used to understand systems and their behavior. If we already have data telling us how some system behaves, we can use computer simulation to answer questions about how these events could possibly have occurred; or about how those events actually did occur.

No comments:

Post a Comment